在系列前期报告中,我们从不同角度探寻了分钟成交数据、TICK盘口委托数据以及逐笔数据中所包含的选股能力。研究结果表明,高频数据中包含着较为显著的选股能力。即使在剔除了常规低频因子的影响后,高频因子依旧具有显著的选股能力。考虑到系列前期报告在研究构建高频因子时,大多仅使用某一类高频数据进行因子构建,并未将相关数据搭配使用。本文从逻辑以及机器学习两个角度出发,尝试将不同类别的高频数据混合使用并构建低频选股因子。
买入意愿与主动买入的结合。总结前期研究成果可知,委托挂单数据中包含了投资者还未释放的交易意愿,而逐笔成交数据中包含了投资者已进行的交易行为。两者的结合能够更加全面地刻画投资者的交易意愿。
更新时间:2021-11-22 09:43
在某个时点上的股票的横截面市值基本上都可以被公司的财务指标和市场因素所解释,也就是说市值解释模型依据了市场上股票的情况,给出了每个公司当期投资者认为的内生市场价值,而解释模型的残差部分,也就是当前市值和内生市值的差,代表了不可解释的部分。残差值越大,代表公司当前的市值向上偏离内生市值越多,那么公司的市值越倾向于回复到其内生市值,也就是说公司股价下跌的可能性越大,反之亦然,特异市值(残差值)是一个相对估值指标,因子值较小的股票在未来表示
我们用线性模型构建了特异市值指标,发现虽然因子表现较好,但是增量信息不明显,究其原因是因为线性的方法没有办法解释市值与财务指标之间的非线性关系,所以导致回归的
更新时间:2021-11-22 07:53
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果
机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力
机器选股模型省去了“因子筛选”、“因子加权
更新时间:2021-11-22 07:53
机器学习在股票市场上应用价值初见成效,不少机器学习的策略远远超过大盘。虽然目前平台的实盘交易功能还未对外开放,但是不少策略开发者已经在实盘跟踪自己的策略了。
1.功能背景
用户在实盘中可能会遇到实盘账户数据和模拟交易运行数据不一致的情形,比如模拟交易的交易计划里提醒今天收盘时卖出A股票1000股,但今天碰巧由于断网导致卖单失败了。于是当日清算后,模拟交易策略里没有1000股A,但是实盘账户里该股票还继续持有。 策略次日会买入新股票,但实际由于收盘卖出失败,其实没有资金买入新股票。如果不对此类问题进行调整处理的话,随着交易日逐渐增多,那么实盘和模拟交易的差异会逐渐扩大,时间长了会
更新时间:2021-11-19 11:07
更新时间:2021-11-12 11:39
作者:Robbie Allen
编译:BigQuant
早在21世纪初,我在编写关于网络和编程的书的时候,我就发现,互联网是一个很好的资源,但是它还不完善。 那时,博客已开始流行。但是YouTube还不是很普遍,同样Quora,Twitter和播客用户也很少。十年过后,我一直在潜心钻研人工智能和机器学习,局面发生了翻天覆地的变化。互联网上现在有非常丰富的资源——当你要寻找选择你想要的资源时,你很难抉择你应该从哪里开始(和停止)!
允许用机器代替人。在20世纪80年代,人工智能研究主要集中在专家系统和模糊逻辑。随着供应算力的成本降低,使用机器解决大规模优化问题变得经济可行。由于硬件和软件方面的进步,如今人工智能专注于使用神经网络和其他学习方法来识别和分析预测变量,
更新时间:2021-10-21 06:30
{{use_style}}
欢迎您来到BigQuant!
BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。
如果您是一位充满好奇心的学习者,在BigQuant您可以前往:
与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。
更新时间:2021-10-09 02:39
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
以StockRanker为例
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量Y未来的取值,并找到了影响变量Y取值的K个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数 + 线上 DataSource 的使用
《Pandas 数据分析》:Panda 语法案例 + Pandas Cheatsheet 与绘图模块使用(K 线图)

作者:James Le 编译:caoxiyang
在机器学习中,有一个叫做“世上没有免费午餐”的定理(NFL)。简而言之,我们无法找到一个放之四海而皆准的最优方案,这一点对于监督学习(即预测建模)尤为重要。例如,你不能说神经网络总是比决策树好,反之亦然。因为其中有很多因素在起作用,比如数据集的大小和结构。
因此,您应该针对您的问题尝试多种不同的算法,同时,保留一组数据,即“测试集”来评估性能并选
更新时间:2021-08-24 05:46
作为平台的铁杆用户,本文主要分享下使用StockRanker模型来实盘交易的一些经验。
在机器学习领域,预测的结果依赖于:数据、算法和特征,因此真正好的策略一定是特征选择和特征构建非常好。
平台的StockRanker模型策略生成器只是搭建了一个策略框架,输入不同的特征就可以看到不同的策略效果。去年的时候,我构造出了大约10个特征进行回测,从12年到16年底,平均年化收益达到了76%,因此就打算先用一部分小资金实盘,进一步验证特征的有效性。
因为政策原因,目前国内股票实盘交易接口并没有开放,因此量化平台都不会说自己平台上可以实盘交易,免得监管部门叫去喝茶。于是只有手动下单,好在股票持仓时
更新时间:2021-08-24 05:46
这是关于股票主动投资组合管理的第一篇教程。在开始介绍正式内容之前,我先简要简要说一下《Alpha系列》的初衷。
近年来,随着国内大数据和人工智能的迅速崛起,量化交易领域也有了长足的发展。 从原来的指标驱动型程序化交易,演化到现在的以机器学习、人工智能为代表的新型量化交易。同时,量化交易的门槛与过去相比下降了许多。 不仅是因为这些年数据科学的发展带动了python及其生态的成熟和推广,更由于类似tushare、vnpy、zipline等开源项目以及像quantopian、bigquant等量化平台的出现, 使得以前做量化先造轮子到现在量化从业者可以专注于策略的研发,使得更多的人能够进入到这个领
更新时间:2021-07-30 09:36
更新时间:2021-07-30 09:11
更新时间:2021-07-30 08:12
更新时间:2021-07-30 07:26
更新时间:2021-07-30 07:26