小市值策略:挖掘市场潜力
策略介绍
小市值策略是一种经典的量化投资策略,旨在通过筛选市值较小的股票,并根据市值对股票进行排序,选取市值最小的一部分股票进行投资。这种策略基于小市值股票在某些市场条件下可能具有较高的增长潜力和投资回报率。
策略背景
小市值策略的理论基础可以追溯到Fama-French三因素模
由jliang创建,最终由jliang更新于
小市值策略是一种经典的量化投资策略,旨在通过筛选市值较小的股票,并根据市值对股票进行排序,选取市值最小的一部分股票进行投资。这种策略基于小市值股票在某些市场条件下可能具有较高的增长潜力和投资回报率。
小市值策略的理论基础可以追溯到Fama-French三因素模
由jliang创建,最终由jliang更新于
在量化投资领域,小市值股票和动量因子是两个广泛应用的选股指标。小市值股票因其相对较小的市值,更容易受到市场情绪和资金流入的影响,从而表现出高收益特性。而动量因子则反映了股票价格在一段时间内的趋势,具有延续性的特点。本文结合这两个因子,构建一个针对全A股市场的量化策略,旨在通过选择具
由jliang创建,最终由jliang更新于
中证红利指数(CSI Dividend Index)是由中证指数公司编制的,旨在反映中国A股市场中高股息率股票的整体表现。该指数选取了股息率较高的股票构成样本,具有较低的波动性和较高的分红收益率,是稳健投资者喜爱的标的。
本策略主要通过筛选中证红利指数中的股票,重点考虑股息率(D
由jliang创建,最终由jliang更新于
全A股市场的量化投资策略在近年来受到越来越多投资者的关注。此次我们介绍的策略主要依赖小市值因子和动量因子进行股票选择,以期在不进行风险控制的情况下最大化年化收益率。小市值因子(Small Size Factor)和动量因子(Momentum Factor)是量化投资中常用的两个因子
由polll创建,最终由polll更新于
量化投资领域中,因子模型是非常重要的一类策略。因子投资策略通过提取市场中的某些特征(如价值、动量、规模等),并以此来构建投资组合。本文介绍的策略主要采用了小市值因子和动量因子,目的是在全A股市场中最大化年化收益率。
小市值因子(Size Factor)指的是选取市值较小的股票进行
由polll创建,最终由polll更新于
量化投资策略通过数学和统计方法,从历史数据中提取出有用的信息,指导投资决策。今天我们要介绍的是一个基于小市值因子和动量因子的全A股量化策略。该策略通过选择市值较小且动量较高的股票,力图在不进行额外风险控制的情况下,实现高年化收益。
小市值因子,即市值较小的股票往往具有较高
由ydong创建,最终由ydong更新于
如果我们的模拟交易需要依赖自定义定时任务的数据结果, 即需要保证模拟交易在这个定时任务后才运行需要怎么处理?
定时任务代码编写完成后点击画布右上角的提交模拟按钮
 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就
由ypyu创建,最终由qxiao更新于
由iquant创建,最终由qxiao更新于
本策略主要讲解如何在策略中加入个股风控与大盘风控逻辑。
本策略就是在平台的默认可视化线性模板策略的基础上进
由xyz142创建,最终由xyz142更新于
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com
由small_q创建,最终由small_q更新于
由iquant创建,最终由qxiao更新于
首先通过爬虫爬取公募基金公布的仓位,我们以招商基金的沪深300指数增强基金为例(代码004190)获取该基金的2018年二季度公布的个股持仓比例,代码实现如下:
import re
import requests
import j
由ypyu创建,最终由qxiao更新于
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com
由ypyu创建,最终由qxiao更新于
由iquant创建,最终由qxiao更新于
由iquant创建,最终由qxiao更新于
由qxiao创建,最终由qxiao更新于
本策略旨在将1.0版本中训练好的StockRanker模型参数直接传入到3.0环境下进行调用。
主要包括以下步骤:
打开1.0环境中的“新手学习模板”,运
由iquant创建,最终由iquant更新于
本文标题为自定义标注,其实就是想告诉大家如何灵活地对数据进行标注,从而得到预测能力更强的机器学习算法。
谈标注一词之前,我们先简单了解机器学习算法中的分类和回归。
分类问题是监督学习的一个核心问题。在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分
由iquant创建,最终由iquant更新于
A股分两种:“漂亮50”和“要命3000” http://stock.qq.com/a/20170428/006821.htm 证券时报记者以三个指标筛选出A股的“漂亮50”,这三个指标分别是净利润增长率长大于15%,连续3年净资产收益率大于15%,市盈率低于35。
由qxiao创建,最终由qxiao更新于
这是旧版的例子, 只能在2.0.0的Aistudio中运行
[https://bigquant.com/experimentshare/54fe864132a7447894540d70cd2e36e5](https://bigquant.com/experimentshare/
由ypyu创建,最终由bq7zuymm更新于
公司的基本面因素一直具备滞后性,令基本面的量化出现巨大困难。而从上市公司的基本面因素来看,一般只有每个季度的公布期才会有财务指标的更新,而这种财务指标的滞后性对股票表现是否有影响呢?如何去规避基本面滞后产生的风险呢?下面我们将重点介绍量化交易在公司基本面分析上的应用,即平时常说的 **
由iquant创建,最终由iquant更新于
由xuxiaoyin创建,最终由xuxiaoyin更新于
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com
由ypyu创建,最终由qxiao更新于